When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dehydrogenation - Wikipedia

    en.wikipedia.org/wiki/Dehydrogenation

    In chemistry, dehydrogenation is a chemical reaction that involves the removal of hydrogen, usually from an organic molecule. It is the reverse of hydrogenation . Dehydrogenation is important, both as a useful reaction and a serious problem.

  3. Dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Dehydrogenase

    Oxidoreductases, enzymes that catalyze oxidation-reduction reactions, constitute Class EC 1 of the IUBMB classification of enzyme-catalyzed reactions. [2] Any of these may be called dehydrogenases, especially those in which NAD + is the electron acceptor (oxidant), but reductase is also used when the physiological emphasis on reduction of the substrate, and oxidase is used only when O 2 is the ...

  4. Blue bottle experiment - Wikipedia

    en.wikipedia.org/wiki/Blue_bottle_experiment

    The aqueous solution in the classical reaction contains glucose, sodium hydroxide and methylene blue. [14] In the first step an acyloin of glucose is formed. The next step is a redox reaction of the acyloin with methylene blue in which the glucose is oxidized to diketone in alkaline solution [6] and methylene blue is reduced to colorless leucomethylene blue.

  5. Pyruvate decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylation

    Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle. Energy-generating ions and molecules , such as amino acids and carbohydrates , enter the Krebs cycle as acetyl coenzyme A and oxidize in the cycle. [ 5 ]

  6. Beta oxidation - Wikipedia

    en.wikipedia.org/wiki/Beta_oxidation

    Dehydrogenation by FAD: The first step is the oxidation of the fatty acid by Acyl-CoA-Dehydrogenase. The enzyme catalyzes the formation of a trans-double bond between the C-2 and C-3 by selectively remove hydrogen atoms from the β-carbon. The regioselectivity of this step is essential for the subsequent hydration and oxidation reactions.

  7. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.

  8. Oxidative decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_decarboxylation

    Decarboxylation reaction reactions are typically quite thermodynamically favorable due to the entropic contribution of cleaving a single molecule into two, one of which is a gas. Conversely, we can expect carboxylation reactions to be energy-requiring, and we should not be surprised to learn ATP hydrolysis is coupled to carboxylation. The most ...

  9. Nicotinamide adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Nicotinamide_adenine_di...

    The redox reactions catalyzed by oxidoreductases are vital in all parts of metabolism, but one particularly important area where these reactions occur is in the release of energy from nutrients. Here, reduced compounds such as glucose and fatty acids are oxidized, thereby releasing energy.