When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Second-countable space - Wikipedia

    en.wikipedia.org/wiki/Second-countable_space

    In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base.More explicitly, a topological space is second-countable if there exists some countable collection = {} = of open subsets of such that any open subset of can be written as a union of elements of some subfamily of .

  3. Axiom of countability - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_countability

    sequential space: a set is closed if and only if every convergent sequence in the set has its limit point in the set; first-countable space: every point has a countable neighbourhood basis (local base) second-countable space: the topology has a countable base; separable space: there exists a countable dense subset

  4. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    second-countable space: the topology has a countable base; separable space: there exists a countable dense subspace; Lindelöf space: every open cover has a countable subcover; σ-compact space: there exists a countable cover by compact spaces; Relations: Every first countable space is sequential. Every second-countable space is first-countable ...

  5. Glossary of general topology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_general_topology

    Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.

  6. Separable space - Wikipedia

    en.wikipedia.org/wiki/Separable_space

    Conversely, a metrizable space is separable if and only if it is second countable, which is the case if and only if it is Lindelöf. To further compare these two properties: An arbitrary subspace of a second-countable space is second countable; subspaces of separable spaces need not be separable (see below).

  7. Lindelöf's lemma - Wikipedia

    en.wikipedia.org/wiki/Lindelöf's_lemma

    Let be a countable basis of .Consider an open cover, =.To get prepared for the following deduction, we define two sets for convenience, := {:}, ′:=. A straight-forward but essential observation is that, = which is from the definition of base. [1]

  8. Perfect map - Wikipedia

    en.wikipedia.org/wiki/Perfect_map

    In mathematics, especially topology, a perfect map is a particular kind of continuous function between topological spaces. Perfect maps are weaker than homeomorphisms , but strong enough to preserve some topological properties such as local compactness that are not always preserved by continuous maps.

  9. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...