When.com Web Search

  1. Ad

    related to: a level graphs and transformations problems pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Subgraph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Subgraph_isomorphism_problem

    Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  4. Forbidden subgraph problem - Wikipedia

    en.wikipedia.org/wiki/Forbidden_subgraph_problem

    The problem may be generalized for a set of forbidden subgraphs : find the maximal number of edges in an -vertex graph which does not have a subgraph isomorphic to any graph from . [ 21 ] There are also hypergraph versions of forbidden subgraph problems that are much more difficult.

  5. Graph rewriting - Wikipedia

    en.wikipedia.org/wiki/Graph_rewriting

    Yet another approach to graph rewriting, known as determinate graph rewriting, came out of logic and database theory. [2] In this approach, graphs are treated as database instances, and rewriting operations as a mechanism for defining queries and views; therefore, all rewriting is required to yield unique results (up to isomorphism), and this is achieved by applying any rewriting rule ...

  6. Steiner tree problem - Wikipedia

    en.wikipedia.org/wiki/Steiner_tree_problem

    Steiner tree problems in graphs are applied to various problems in research and industry, [7] including multicast routing [8] and bioinformatics. [9] A special case of this problem is when G is a complete graph, each vertex v ∈ V corresponds to a point in a metric space, and the edge weights w(e) for each e ∈ E correspond to distances in ...

  7. Graph canonization - Wikipedia

    en.wikipedia.org/wiki/Graph_canonization

    The vertex set of an n-vertex graph may be identified with the integers from 1 to n, and using such an identification a canonical form of a graph may also be described as a permutation of its vertices. Canonical forms of a graph are also called canonical labelings, [4] and graph canonization is also sometimes known as graph canonicalization.

  8. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...

  9. Directed acyclic graph - Wikipedia

    en.wikipedia.org/wiki/Directed_acyclic_graph

    In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called arcs ), with each edge directed from one vertex to another, such that following those directions will never form a closed loop.