Ads
related to: shaded venn diagram examples
Search results
Results From The WOW.Com Content Network
In Venn diagrams, a shaded zone may represent an empty zone, whereas in an Euler diagram, the corresponding zone is missing from the diagram. For example, if one set represents dairy products and another cheeses , the Venn diagram contains a zone for cheeses that are not dairy products.
[c] For example, Hill & Peterson (1968) [13] present the Venn diagram with shading and all. They give examples of Venn diagrams to solve example switching-circuit problems, but end up with this statement: "For more than three variables, the basic illustrative form of the Venn diagram is inadequate.
Some authors (for example Willard, in General Topology) use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets.
The three Venn diagrams in the figure below represent respectively conjunction x ∧ y, disjunction x ∨ y, and complement ¬x. Figure 2. Venn diagrams for conjunction, disjunction, and complement. For conjunction, the region inside both circles is shaded to indicate that x ∧ y is 1 when both variables are 1.
A Venn diagram is a representation of mathematical sets: a mathematical diagram representing sets as circles, with their relationships to each other expressed through their overlapping positions, so that all possible relationships between the sets are shown. [4]
In set theory the Venn diagrams tell, that there is an element in one of the red intersections. (The existential quantifications for the red intersections are combined by or. They can be combined by the exclusive or as well.) Relations like subset and implication, arranged in the same kind of matrix as above. In set theory the Venn diagrams tell,
Venn diagram of = . The symmetric difference is equivalent to the union of both relative complements, that is: [1] = (), The symmetric difference can also be expressed using the XOR operation ⊕ on the predicates describing the two sets in set-builder notation:
Square of opposition. The lower case letters (a, e, i, o) are used instead of the upper case letters (A, E, I, O) here in order to be visually distinguished from the surrounding upper case letters S (Subject term) and P (Predicate term). In the Venn diagrams, black areas are empty and red areas are nonempty. White areas may or may not be empty.