When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rayleigh–Plesset equation - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Plesset_equation

    The Rayleigh–Plesset equation is often applied to the study of cavitation bubbles, shown here forming behind a propeller.. In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid.

  3. Maximum bubble pressure method - Wikipedia

    en.wikipedia.org/wiki/Maximum_bubble_pressure_method

    Figure 2: Change of pressure during bubble formation plotted as a function of added volume. Initially a bubble appears on the end of the capillary. As the size increases, the radius of curvature of the bubble decreases. At the point of the maximum bubble pressure, the bubble has a complete hemispherical shape whose radius is identical to the ...

  4. Pressure-gradient force - Wikipedia

    en.wikipedia.org/wiki/Pressure-gradient_force

    In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of motion, if there is no additional force to balance it. The resulting force is always directed from the region of higher-pressure ...

  5. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or d S equivalently (resolved into components , θ is angle to ...

  6. Added mass - Wikipedia

    en.wikipedia.org/wiki/Added_mass

    Basset force for describing the effect of the body's relative motion history on the viscous forces in a Stokes flow; Basset–Boussinesq–Oseen equation for the description of the motion of – and forces on – a particle moving in an unsteady flow at low Reynolds numbers; Darwin drift for the relation between added mass and the Darwin drift ...

  7. Eötvös number - Wikipedia

    en.wikipedia.org/wiki/Eötvös_number

    Describing the ratio of gravitational to capillary forces, the Eötvös or Bond number is given by the equation: [8] = =.: difference in density of the two phases, (SI units: kg/m 3)

  8. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    Due to the trapped air inside the bubble, it is impossible for the surface area to shrink to zero, hence the pressure inside the bubble is greater than outside, because if the pressures were equal, then the bubble would simply collapse. [15] This pressure difference can be calculated from Laplace's pressure equation,

  9. Vertical pressure variation - Wikipedia

    en.wikipedia.org/wiki/Vertical_pressure_variation

    Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.

  1. Related searches how to calculate bubble pressure equation units of force and acceleration

    physics bubble pressurebubble pressure tensiometer
    bubble pressure metricequation for fluid mechanics
    pressure gradient force formula