Search results
Results From The WOW.Com Content Network
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
Coin values can be modeled by a set of n distinct positive integer values (whole numbers), arranged in increasing order as w 1 through w n.The problem is: given an amount W, also a positive integer, to find a set of non-negative (positive or zero) integers {x 1, x 2, ..., x n}, with each x j representing how often the coin with value w j is used, which minimize the total number of coins f(W)
Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, [3] selection of investments and portfolios, [4] selection of assets for asset-backed securitization, [5] and generating keys for the Merkle–Hellman [6] and other knapsack cryptosystems.
For the one-dimensional case, the new patterns are introduced by solving an auxiliary optimization problem called the knapsack problem, using dual variable information from the linear program. The knapsack problem has well-known methods to solve it, such as branch and bound and dynamic programming. The Delayed Column Generation method can be ...
Packing squares in a square: Optimal solutions have been proven for n from 1-10, 14-16, 22-25, 33-36, 62-64, 79-81, 98-100, and any square integer. The wasted space is asymptotically O(a 3/5). Packing squares in a circle: Good solutions are known for n ≤ 35. The optimal packing of 10 squares in a square
A knapsack auction is an auction in which several identical items are sold, and there are several bidders with different valuations interested in different amounts of items. The goal is to choose a subset of the bidders with a total demand, at most, the number of items and, subject to that, a maximum total value.
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
Figure 1. Finding the shortest path in a graph using optimal substructure; a straight line indicates a single edge; a wavy line indicates a shortest path between the two vertices it connects (among other paths, not shown, sharing the same two vertices); the bold line is the overall shortest path from start to goal.