Search results
Results From The WOW.Com Content Network
There are three Kinematic equations for linear (and generally uniform) motion. These are v = u + at; v 2 = u 2 + 2as; s = ut + 1 / 2 at 2; Besides these equations, there is one more equation used for finding displacement from the 0th to the nth second. The equation is: = + ()
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Important formulas in kinematics define the velocity and acceleration of points in a moving body as they trace trajectories in three-dimensional space. This is particularly important for the center of mass of a body, which is used to derive equations of motion using either Newton's second law or Lagrange's equations.
In the inertial frame, the differential equation is not always helpful in solving for the motion of a general rotating rigid body, as both I in and ω can change during the motion. One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant.
The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the system itself, as a function of time. The formulation and solution of rigid body dynamics is an important tool in the computer simulation of mechanical systems.
Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors [1] – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies.
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.
In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. [ 1 ] The kinematics equations of the robot are used in robotics , computer games , and animation .