Ads
related to: example of a relation graph in algebra
Search results
Results From The WOW.Com Content Network
A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective. For example, the green relation in the diagram is a surjection, but the red, blue and black ones are not. A bijection [d] A function that is injective and surjective.
The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7. The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1 ...
The lattice Con(A) of all congruence relations on an algebra A is algebraic. John M. Howie described how semigroup theory illustrates congruence relations in universal algebra: In a group a congruence is determined if we know a single congruence class, in particular if we know the normal subgroup which is the class containing the identity.
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]
It encodes the common concept of relation: an element is related to an element , if and only if the pair (,) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers, in which each prime is related to each integer that is ...
The edge relation [note 1] of a tournament graph is always a connected relation on the set of ' s vertices. If a strongly connected relation is symmetric, it is the universal relation. A relation is strongly connected if, and only if, it is connected and reflexive. [proof 1]