Ad
related to: shapes that fit together without gaps in walls
Search results
Results From The WOW.Com Content Network
If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [ 19 ]
The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.
In tiling or tessellation problems, there are to be no gaps, nor overlaps. Many of the puzzles of this type involve packing rectangles or polyominoes into a larger rectangle or other square-like shape. There are significant theorems on tiling rectangles (and cuboids) in rectangles (cuboids) with no gaps or overlaps:
The regular pentagon cannot form Cairo tilings, as it does not tile the plane without gaps. There is a unique equilateral pentagon that can form a type 4 Cairo tiling; it has five equal sides but its angles are unequal, and its tiling is bilaterally symmetric. [4] [13] Infinitely many other equilateral pentagons can form type 2 Cairo tilings. [4]
Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials.
Dry stone walls in the Yorkshire Dales, England. Dry stone, sometimes called drystack or, in Scotland, drystane, is a building method by which structures are constructed from stones without any mortar to bind them together. [1] A certain amount of binding is obtained through the use of carefully selected interlocking stones.
Antwerp v3.0, [4] a free online application, allows for the infinite generation of regular polygon tilings through a set of shape placement stages and iterative rotation and reflection operations, obtained directly from the GomJau-Hogg’s notation.
Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [ 2 ] Several variants of the problem, depending on the particular definitions of nonperiodicity and the specifications of what sets may qualify as tiles and what types of matching rules are permitted, were solved beginning in the 1990s.