When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stress–strength analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strength_analysis

    Probability density of stress S (red, top) and resistance R (blue, top), and of equality (m = R - S = 0, black, bottom). Distribution of stress S and strength R: all the (R, S) situations have a probability density (grey level surface). The area where the margin m = R - S is positive is the set of situation where the system is reliable (R > S).

  3. Roark's Formulas for Stress and Strain - Wikipedia

    en.wikipedia.org/wiki/Roark's_Formulas_for_Stress...

    The book covers various subjects, including bearing and shear stress, experimental stress analysis, stress concentrations, material behavior, and stress and strain measurement. It also features expanded tables and cases, improved notations and figures within the tables, consistent table and equation numbering, and verification of correction ...

  4. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column. The formula is based on experimental results by J. B. Johnson from around 1900 as an alternative to Euler's critical load formula under low slenderness ratio (the ratio of radius of gyration to ...

  5. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  6. Rainflow-counting algorithm - Wikipedia

    en.wikipedia.org/wiki/Rainflow-counting_algorithm

    Figure 3: Rainflow analysis for tensile peaks. The stress history in Figure 2 is reduced to tensile peaks in Figure 3 and compressive valleys in Figure 4. From the tensile peaks in Figure 3: The first half-cycle starts at tensile peak 1 and terminates opposite a greater tensile stress, peak 3 (case c); its magnitude is 16 MPa (2 - (-14) = 16).

  7. Alternative stress measures - Wikipedia

    en.wikipedia.org/wiki/Alternative_stress_measures

    The nominal stress = is the transpose of the first Piola–Kirchhoff stress (PK1 stress, also called engineering stress) and is defined via = = = or = = = This stress is unsymmetric and is a two-point tensor like the deformation gradient.

  8. Parts stress modelling - Wikipedia

    en.wikipedia.org/wiki/Parts_stress_modelling

    Parts stress modelling is a method in engineering and especially electronics to find an expected value for the rate of failure of the mechanical and electronic components of a system. It is based upon the idea that the more components that there are in the system, and the greater stress that they undergo in operation, the more often they will fail.

  9. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]