When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    In the special case of ⁠ ⁠ being a normal matrix, and thus also square, the spectral theorem ensures that it can be unitarily diagonalized using a basis of eigenvectors, and thus decomposed as ⁠ = ⁠ for some unitary matrix ⁠ ⁠ and diagonal matrix ⁠ ⁠ with complex elements ⁠ ⁠ along the diagonal.

  3. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...

  4. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.

  5. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  6. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.

  7. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The external angle of a square is equal to 90°. [4] The diagonals of a square are equal and bisect each other, meeting at 90°. [5] The diagonals of a square bisect its internal angles, forming adjacent angles of 45°. [6] All four sides of a square are equal. [7] Opposite sides of a square are parallel. [8]

  8. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then

  9. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    A square diagonal matrix is a symmetric matrix, so this can also be called a symmetric diagonal matrix. The following matrix is square diagonal matrix: [] If the entries are real numbers or complex numbers, then it is a normal matrix as well. In the remainder of this article we will consider only square diagonal matrices, and refer to them ...