Search results
Results From The WOW.Com Content Network
One way to visualize the similarity between two protein or nucleic acid sequences is to use a similarity matrix, known as a dot plot. These were introduced by Gibbs and McIntyre in 1970 [1] and are two-dimensional matrices that have the sequences of the proteins being compared along the vertical and horizontal axes.
Nucleic acids consist of a chain of linked units called nucleotides. Each nucleotide consists of three subunits: a phosphate group and a sugar (ribose in the case of RNA, deoxyribose in DNA) make up the backbone of the nucleic acid strand, and attached to the sugar is one of a set of nucleobases.
This is particularly determined by the number of clones needed to have in a library. The number of clones to get a sampling of all the genes is determined by the size of the organism's genome as well as the average insert size. This is represented by the formula (also known as the Carbon and Clarke formula): [15]
Gene structure is the organisation of specialised sequence elements within a gene. Genes contain most of the information necessary for living cells to survive and reproduce. [ 1 ] [ 2 ] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.
A De Finetti diagram visualizing genotype frequencies as distances to triangle edges x (AA), y (Aa) and z (aa) in a ternary plot. The curved line are the Hardy–Weinberg equilibria . A Punnett square visualizing the genotype frequencies of a Hardy–Weinberg equilibrium as areas of a square.
Consider the following example DNA sequence: A[CT]N{A}YR. In this notation, A means that an A is always found in that position; [CT] stands for either C or T; N stands for any base; and {A} means any base except A. Y represents any pyrimidine, and R indicates any purine. In this example, the notation [CT] does not give any indication of the ...
In order to maintain a standard for Cell and molecular biology articles a standard color scheme should be used. The accepted colors for cellular locations are described in the table. Colors for other components, such as molecules, can be chosen at the discretion of the designer, however, the following should be considered:
In biology, a substitution model, also called models of sequence evolution, are Markov models that describe changes over evolutionary time. These models describe evolutionary changes in macromolecules, such as DNA sequences or protein sequences, that can be represented as sequence of symbols (e.g., A, C, G, and T in the case of DNA or the 20 "standard" proteinogenic amino acids in the case of ...