Search results
Results From The WOW.Com Content Network
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.
Today the commutative property is a well-known and basic property used in most branches of mathematics. The first recorded use of the term commutative was in a memoir by François Servois in 1814, [1] [10] which used the word commutatives when describing functions that have what is now called the commutative property.
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality ...
indicates that the column's property is always true for the row's term (at the very left), while indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Y in the "Symmetric" column and in the ...
The typical diagram of the definition of a universal morphism. In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them.
In mathematics, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some sufficiently small or arbitrarily small neighborhoods of points).
In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every ...