Search results
Results From The WOW.Com Content Network
This hemimethylated DNA is recognized by the protein SeqA, which binds and sequesters the origin sequence; in addition, DnaA (required for initiation of replication) binds less well to hemimethylated DNA. As a result, newly replicated origins are prevented from immediately initiating another round of DNA replication.
DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.
A distinct group of DNA-binding proteins are the DNA-binding proteins that specifically bind single-stranded DNA. In humans, replication protein A is the best-understood member of this family and is used in processes where the double helix is separated, including DNA replication, recombination and DNA repair. [18]
DnaA is a protein that activates initiation of DNA replication in bacteria. [1] Based on the Replicon Model, a positively active initiator molecule contacts with a particular spot on a circular chromosome called the replicator to start DNA replication. [2] It is a replication initiation factor which promotes the unwinding of DNA at oriC. [1]
The major enzymatic functions carried out at the replication fork are well conserved from prokaryotes to eukaryotes, but the replication machinery in eukaryotic DNA replication is a much larger complex, coordinating many proteins at the site of replication, forming the replisome.
Replication protein A (RPA) is the major protein that binds to single-stranded DNA (ssDNA) in eukaryotic cells. [ 1 ] [ 2 ] In vitro , RPA shows a much higher affinity for ssDNA than RNA or double-stranded DNA. [ 3 ]
The initiator proteins are the proteins that recognize a specific DNA sequence within the origin of replication. The origin of replication is the site where the helicase attaches to the template strand and starts to unwind the DNA into two strands.
The ORC4 protein is known to bind the AT-rich portion of the origin of replication in S. pombe using AT hook motifs. The mechanism of origin recognition in higher eukaryotes is not well understood but it is thought that the ORC1-6 proteins depend on unusual DNA topology for binding.