When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive notion - Wikipedia

    en.wikipedia.org/wiki/Primitive_notion

    The notions themselves may not necessarily need to be stated; Susan Haack (1978) writes, "A set of axioms is sometimes said to give an implicit definition of its primitive terms." [9] Euclidean geometry: Under Hilbert's axiom system the primitive notions are point, line, plane, congruence, betweeness, and incidence.

  3. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    The only primitive relations are "betweenness" and "congruence" among points. Tarski's axiomatization is shorter than its rivals, in a sense Tarski and Givant (1999) make explicit. It is more concise than Pieri's because Pieri had only two primitive notions while Tarski introduced three: point, betweenness, and congruence.

  4. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    The primitive notions of his theory were function and argument. Using these notions, he defined class and set. [1] Paul Bernays reformulated von Neumann's theory by taking class and set as primitive notions. [2] Kurt Gödel simplified Bernays' theory for his relative consistency proof of the axiom of choice and the generalized continuum ...

  5. Tarski's axiomatization of the reals - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axiomatization_of...

    In 1936, Alfred Tarski gave an axiomatization of the real numbers and their arithmetic, consisting of only the eight axioms shown below and a mere four primitive notions: [1] the set of reals denoted R, a binary relation over R, denoted by infix <, a binary operation of addition over R, denoted by infix +, and the constant 1.

  6. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    In mathematics and logic, an axiomatic system is any set of primitive notions and axioms to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system.

  7. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Peano's 1889 work on geometry, largely a translation of Pasch's treatise into the notation of symbolic logic (which Peano invented), uses the primitive notions of point and betweeness. [28] Peano breaks the empirical tie in the choice of primitive notions and axioms that Pasch required.

  8. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An alternative synthetic axiomatization of the real numbers and their arithmetic was given by Alfred Tarski, consisting of only the 8 axioms shown below and a mere four primitive notions: a set called the real numbers, denoted , a binary relation over called order, denoted by the infix operator <, a binary operation over called addition ...

  9. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    The process of logical synthesis begins with some arbitrary but definite starting point. This starting point is the introduction of primitive notions or primitives and axioms about these primitives: Primitives are the most basic ideas. Typically they include both objects and relationships.