Ad
related to: volume and capacity word problems pdf
Search results
Results From The WOW.Com Content Network
The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. By metonymy, the term "volume" sometimes is used to refer to the corresponding region (e.g., bounding volume). [2] [3]
Water pouring puzzles (also called water jug problems, decanting problems, [1] [2] measuring puzzles, or Die Hard with a Vengeance puzzles) are a class of puzzle involving a finite collection of water jugs of known integer capacities (in terms of a liquid measure such as liters or gallons). Initially each jug contains a known integer volume of ...
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.
is the bulk volume of that portion of the aquifer from which the water is released ([L 3]); is the volume of water released from storage ([L 3]); is the decline in pressure(N•m −2 or [ML −1 T −2]) ; is the decline in hydraulic head ([L]) and
The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.
Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law.
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]