Search results
Results From The WOW.Com Content Network
Logical Intuition, or mathematical intuition or rational intuition, is a series of instinctive foresight, know-how, and savviness often associated with the ability to perceive logical or mathematical truth—and the ability to solve mathematical challenges efficiently. [1]
The fundamental distinguishing characteristic of intuitionism is its interpretation of what it means for a mathematical statement to be true. In Brouwer's original intuitionism, the truth of a mathematical statement is a subjective claim: a mathematical statement corresponds to a mental construction, and a mathematician can assert the truth of a statement only by verifying the validity of that ...
Improving mathematical intuition by abandoning naive assumptions and developing a more critical attitude; Finally, mathematical maturity has also been defined as an ability to do the following: [5] Make and use connections with other problems and other disciplines; Fill in missing details; Spot, correct and learn from mistakes
Intuitionistic logic is a commonly-used tool in developing approaches to constructivism in mathematics. The use of constructivist logics in general has been a controversial topic among mathematicians and philosophers (see, for example, the Brouwer–Hilbert controversy). A common objection to their use is the above-cited lack of two central ...
Intuition is an assumed truth with an unknown, or possibly unexamined, source. It is a judgment that is not dependent on a rational examination of the facts. It is usually experienced as a sudden sensation and/or rush of thoughts that feel "right". Many persons experience intuitive epiphanies which later prove to be true.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and, in particular, to have reliable concepts of theorems, proofs, algorithms, etc. This may also include the philosophical study of the relation of this framework with reality. [1]
The key to our method is provided by the detailed analysis of the relation between mathematical languages and mathematical structures which lies at the bottom of contemporary model theory. In 1973, intuitionist Arend Heyting praised nonstandard analysis as "a standard model of important mathematical research". [7]