Search results
Results From The WOW.Com Content Network
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. [5] The field was founded by Harvey Friedman . Its defining method can be described as "going backwards from the theorems to the axioms ", in contrast to the ordinary mathematical practice of deriving ...
In mathematics, an impossibility theorem is a theorem that demonstrates a problem or general set of problems cannot be solved. These are also known as proofs of impossibility, negative proofs, or negative results. Impossibility theorems often resolve decades or centuries of work spent looking for a solution by proving there is no solution.
In mathematics and logic, a direct proof is a way of showing the truth or falsehood of a given statement by a straightforward combination of established facts, usually axioms, existing lemmas and theorems, without making any further assumptions. [1]
These problems were also studied by mathematicians, and this led to establish mathematical logic as a new area of mathematics, consisting of providing mathematical definitions to logics (sets of inference rules), mathematical and logical theories, theorems, and proofs, and of using mathematical methods to prove theorems about these concepts.
Due to the paramount importance of proofs in mathematics, mathematicians since the time of Euclid have developed conventions to demarcate the beginning and end of proofs. In printed English language texts, the formal statements of theorems, lemmas, and propositions are set in italics by tradition. The beginning of a proof usually follows ...
A formal proof of a well-formed formula in a proof system is a set of axioms and rules of inference of proof system that infers that the well-formed formula is a theorem of proof system. [ 2 ] Usually a given proof calculus encompasses more than a single particular formal system, since many proof calculi are under-determined and can be used for ...