When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    as one would expect. This is equivalent to the above definition of the 2D mean diameter. However, for historical reasons, the hydraulic radius is defined as the cross-sectional area of a pipe A, divided by its wetted perimeter P, which leads to =, and the hydraulic radius is half of the 2D mean radius. [3]

  3. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.

  4. Mean radius (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Mean_radius_(astronomy)

    The mean radius in astronomy is a measure for the size of planets and small Solar System bodies. Alternatively, the closely related mean diameter ( D {\displaystyle D} ), which is twice the mean radius, is also used.

  5. Diameter - Wikipedia

    en.wikipedia.org/wiki/Diameter

    In this context, a diameter is any chord which passes through the conic's centre. A diameter of an ellipse is any line passing through the centre of the ellipse. [7] Half of any such diameter may be called a semidiameter, although this term is most often a synonym for the radius of a circle or sphere. [8] The longest diameter is called the ...

  6. Measurement of a Circle - Wikipedia

    en.wikipedia.org/wiki/Measurement_of_a_Circle

    Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.

  7. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem, this is a right triangle with right angle at B. Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the ...

  8. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Consider a circle in with center at the origin and radius . Gauss's circle problem asks how many points there are inside this circle of the form ( m , n ) {\displaystyle (m,n)} where m {\displaystyle m} and n {\displaystyle n} are both integers.

  9. Diameter of a set - Wikipedia

    en.wikipedia.org/wiki/Diameter_of_a_set

    Jung's theorem provides more general inequalities relating the diameter to the radius. [5] The isodiametric inequality or Bieberbach inequality , a relative of the isoperimetric inequality , states that, for a given diameter, the planar shape with the largest area is a disk, and the three-dimensional shape with the largest volume is a sphere.