Search results
Results From The WOW.Com Content Network
Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reduction–oxidation [2] or oxidation–reduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4] Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
Photo-oxidation causes the polymer chains to break (chain scission), resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles, the process is called phototendering. Technologies have been developed to both accelerate and inhibit this process.
For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...
A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. An example of a galvanic cell consists of two different metals, each immersed in separate beakers containing their ...
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]
However, there are known materials that can mediate the reduction step efficiently therefore much of the current research is aimed at the oxidation half reaction also known as the Oxygen Evolution Reaction (OER). Current research focuses on understanding the mechanism of OER and development of new materials that catalyze the process. [3]
Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition, and is often the product-forming step in many catalytic processes. Since oxidative addition and reductive ...
The increased reduction potential of Ir(ppy) 3 compared to [Ru(bipy) 3] 2+ allows direct reduction of the carbon-iodine bond without interacting with a stoichiometric reductant. Thus, the iridium complex transfers an electron to the substrate, causing fragmentation of the substrate and oxidizing the catalyst to the Ir(IV) oxidation state.