Search results
Results From The WOW.Com Content Network
The eukaryotic cell cycle is very complex and is one of the most studied topics, since its misregulation leads to cancers. It is possibly a good example of a mathematical model as it deals with simple calculus but gives valid results. Two research groups [1] [2] have produced several models of the cell cycle simulating several organisms. They ...
The corridor has two signals located at milepost 1 and 2 starting upstream. The signals have a split of 30 seconds and a cycle length of 60 second. With this information, it is a simple matter of iteration of equations (1) for all the cells and time steps. Figure 3 and Table 1 shows the spatial and temporal distribution of density for the case ...
Cell cycle analysis by DNA content measurement is a method that most frequently employs flow cytometry to distinguish cells in different phases of the cell cycle.Before analysis, the cells are usually permeabilised and treated with a fluorescent dye that stains DNA quantitatively, such as propidium iodide (PI) or 4,6-diamidino-2-phenylindole (DAPI).
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. [ 1 ]
The main mechanism of action of the cell cycle checkpoints is through the regulation of the activities of a family of protein kinases known as the cyclin-dependent kinases (CDKs), which bind to different classes of regulator proteins known as cyclins, with specific cyclin-CDK complexes being formed and activated at different phases of the cell ...
APC activity also causes the destruction of S and M cyclins and thus the inactivation of Cdks, which promotes the completion of mitosis and cytokinesis. APC activity is maintained in G1 until G1/S–Cdk activity rises again and commits the cell to the next cycle. This scheme serves only as a general guide and does not apply to all cell types. [1]
The cell cycle is a cycle rather than a linear process because the two daughter cells produced repeat the cycle. This process contains two main phases, interphase , in which the cell grows and synthesizes a copy of its DNA, and the mitotic (M) phase, during which the cell separates its DNA and divides into two new daughter cells. [ 7 ]