When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  3. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The definition of uniform continuity appears earlier in the work of Bolzano where he also proved that continuous functions on an open interval do not need to be uniformly continuous. In addition he also states that a continuous function on a closed interval is uniformly continuous, but he does not give a complete proof. [1]

  4. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.

  5. Pointwise convergence - Wikipedia

    en.wikipedia.org/wiki/Pointwise_convergence

    The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example, f ( x ) = lim n → ∞ cos ⁡ ( π x ) 2 n {\displaystyle f(x)=\lim _{n\to \infty }\cos(\pi x)^{2n}} takes the value 1 {\displaystyle 1} when x {\displaystyle x} is an integer and 0 {\displaystyle ...

  6. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    In particular, the many definitions of continuity employ the concept of limit: roughly, a function is continuous if all of its limits agree with the values of the function. The concept of limit also appears in the definition of the derivative : in the calculus of one variable, this is the limiting value of the slope of secant lines to the graph ...

  7. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    If f and g are compactly supported continuous functions, then their convolution exists, and is also compactly supported and continuous (Hörmander 1983, Chapter 1). More generally, if either function (say f) is compactly supported and the other is locally integrable, then the convolution f∗g is well-defined and continuous.

  8. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    The sum and difference of two absolutely continuous functions are also absolutely continuous. If the two functions are defined on a bounded closed interval, then their product is also absolutely continuous. [4] If an absolutely continuous function is defined on a bounded closed interval and is nowhere zero then its reciprocal is absolutely ...

  9. Approximately continuous function - Wikipedia

    en.wikipedia.org/wiki/Approximately_continuous...

    A fundamental result in the theory of approximately continuous functions is derived from Lusin's theorem, which states that every measurable function is approximately continuous at almost every point of its domain. [4] The concept of approximate continuity can be extended beyond measurable functions to arbitrary functions between metric spaces.