When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    Linear functions + are the simplest examples of uniformly continuous functions. Any continuous function on the interval [ 0 , 1 ] {\displaystyle [0,1]} is also uniformly continuous, since [ 0 , 1 ] {\displaystyle [0,1]} is a compact set.

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A function is continuous on a semi-open or a closed interval; if the interval is contained in the domain of the function, the function is continuous at every interior point of the interval, and the value of the function at each endpoint that belongs to the interval is the limit of the values of the function when the variable tends to the ...

  4. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    The function f(x) = √ x defined on [0, 1] is not Lipschitz continuous. This function becomes infinitely steep as x approaches 0 since its derivative becomes infinite. However, it is uniformly continuous, [8] and both Hölder continuous of class C 0, α for α ≤ 1/2 and also absolutely continuous on [0, 1] (both of which imply the former).

  5. Hölder condition - Wikipedia

    en.wikipedia.org/wiki/Hölder_condition

    There are examples of uniformly continuous functions that are not α –Hölder continuous for any α. For instance, the function defined on [0, 1/2] by f(0) = 0 and by f(x) = 1/log(x) otherwise is continuous, and therefore uniformly continuous by the Heine-Cantor theorem. It does not satisfy a Hölder condition of any order, however.

  6. Continuous uniform distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_uniform...

    Any probability density function integrates to , so the probability density function of the continuous uniform distribution is graphically portrayed as a rectangle where ⁠ ⁠ is the base length and ⁠ ⁠ is the height. As the base length increases, the height (the density at any particular value within the distribution boundaries) decreases.

  7. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    If the domain is a bornological space (for example, a pseudometrizable TVS, a Fréchet space, a normed space) then a linear operators into any other locally convex spaces is bounded if and only if it is continuous. For LF spaces, a weaker converse holds; any bounded linear map from an LF space is sequentially continuous.

  8. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    It turns out that the Weierstrass function is far from being an isolated example: although it is "pathological", it is also "typical" of continuous functions: In a topological sense: the set of nowhere-differentiable real-valued functions on [0, 1] is comeager in the vector space C ([0, 1]; R ) of all continuous real-valued functions on [0, 1 ...

  9. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...