When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pressure head - Wikipedia

    en.wikipedia.org/wiki/Pressure_head

    Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids:

  3. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    The total hydraulic head of a fluid is composed of pressure head and elevation head. [1] [2] The pressure head is the equivalent gauge pressure of a column of water at the base of the piezometer, and the elevation head is the relative potential energy in terms of an elevation. The head equation, a simplified form of the Bernoulli principle for ...

  4. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Darcy–Weisbach equation calculator; Pipe pressure drop calculator Archived 2019-07-13 at the Wayback Machine for single phase flows. Pipe pressure drop calculator for two phase flows. Archived 2019-07-13 at the Wayback Machine; Open source pipe pressure drop calculator. Web application with pressure drop calculations for pipes and ducts

  6. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The hydrostatic pressure p is defined as =, with p 0 some reference pressure, or when rearranged as head: =. The term ⁠ p / ρg ⁠ is also called the pressure head, expressed as a length measurement. It represents the internal energy of the fluid due to the pressure exerted on the container.

  7. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    The meter is "read" as a differential pressure head in cm or inches of water and is equivalent to the difference in velocity head. The dynamic pressure, along with the static pressure and the pressure due to elevation, is used in Bernoulli's principle as an energy balance on a closed system.

  8. Standard step method - Wikipedia

    en.wikipedia.org/wiki/Standard_Step_Method

    The same logic applies downstream to determine that the water surface follows an M3 profile from the gate until the depth reaches the conjugate depth of the normal depth at which point a hydraulic jump forms to raise the water surface to the normal depth. Step 4: Use the Newton Raphson Method to solve the M1 and M3 surface water profiles. The ...

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)