Search results
Results From The WOW.Com Content Network
The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
This definition recognizes a lambda abstraction with an actual parameter as defining a function. Only lambda abstractions without an application are treated as anonymous functions. lambda-named A named function. An expression like (.) where M is lambda free and N is lambda free or an anonymous function.
The only difference in implementation is that in the first case we used a nested function with a name, g, while in the second case we used an anonymous nested function (using the Python keyword lambda for creating an anonymous function). The original name, if any, used in defining them is irrelevant.
Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane
This is mainly of academic interest, particularly to show that the lambda calculus has recursion, as the resulting expression is significantly more complicated than the original named recursive function. Conversely, the use of fixed-pointed combinators may be generically referred to as "anonymous recursion", as this is a notable use of them ...
(Here we use the standard notations and conventions of lambda calculus: Y is a function that takes one argument f and returns the entire expression following the first period; the expression . ( ) denotes a function that takes one argument x, thought of as a function, and returns the expression ( ), where ( ) denotes x applied to itself ...
Higher-order programming is a style of computer programming that uses software components, like functions, modules or objects, as values. It is usually instantiated with, or borrowed from, models of computation such as lambda calculus which make heavy use of higher-order functions. A programming language can be considered higher-order if ...