Search results
Results From The WOW.Com Content Network
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]
In information retrieval, Okapi BM25 (BM is an abbreviation of best matching) is a ranking function used by search engines to estimate the relevance of documents to a given search query. It is based on the probabilistic retrieval framework developed in the 1970s and 1980s by Stephen E. Robertson , Karen Spärck Jones , and others.
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.
At the time of the MMLU's release, most existing language models performed around the level of random chance (25%), with the best performing GPT-3 model achieving 43.9% accuracy. [3] The developers of the MMLU estimate that human domain-experts achieve around 89.8% accuracy. [ 3 ]
Information about this dataset's format is available in the HuggingFace dataset card and the project's website. The dataset can be downloaded here, and the rejected data here. 2016 [343] Paperno et al. FLAN A re-preprocessed version of the FLAN dataset with updates since the original FLAN dataset was released is available in Hugging Face: test data
On September 23, 2024, to further the International Decade of Indigenous Languages, Hugging Face teamed up with Meta and UNESCO to launch a new online language translator [14] built on Meta's No Language Left Behind open-source AI model, enabling free text translation across 200 languages, including many low-resource languages. [15]
Learning to rank [1] or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. [2]
Other than language models, Vision MoE [33] is a Transformer model with MoE layers. They demonstrated it by training a model with 15 billion parameters. MoE Transformer has also been applied for diffusion models. [34] A series of large language models from Google used MoE. GShard [35] uses MoE with up to top-2 experts per layer. Specifically ...