Search results
Results From The WOW.Com Content Network
In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.
Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample. This is an example of a univariate (=single variable) frequency table. The frequency of each response to a survey question is depicted.
HTML5 Mode Calculator (3D view of each mode, audio playback, Bonello diagram, Bolt area, Schröder frequency,...) Graphical mode calculator; Standing Waves - Room Modes; Room mode calculations and tables; Test tones playable online: helps localizing resonant frequencies in your room. Standing waves (room modes) between sonically hard parallel walls
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration.It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable.
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
A mode of vibration is characterized by a modal frequency and a mode shape. It is numbered according to the number of half waves in the vibration. For example, if a vibrating beam with both ends pinned displayed a mode shape of half of a sine wave (one peak on the vibrating beam) it would be vibrating in mode 1.
where p 1 and p 2 are the proportion contained in the primary (that with the greater amplitude) and secondary (that with the lesser amplitude) mode and φ 1 and φ 2 are the φ-sizes of the primary and secondary mode. The φ-size is defined as minus one times the log of the data size taken to the base 2. This transformation is commonly used in ...