Search results
Results From The WOW.Com Content Network
Ultrasound is sound with frequencies greater than 20 kilohertz. [1] This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.
Typical diagnostic ultrasound machines operate in the frequency range of 2-18 megahertz, whereas home ultrasound machines and therapeutic ultrasound machines operate in the frequency range of .7-3.3 megahertz. Diagnostic sonography is typically used to create an audio "image", such as during pregnancy to visualize the developing baby.
Derivative of Heath Raftery's own creation. Rough diagram of sound frequency scale, showing ultrasound and some applications. Date: 28 June 2010, 23:30 (UTC) Source: Ultrasound_range_diagram.png; Ultrasound_range_diagram_png_(sk).svg; Author: Ultrasound_range_diagram.png: The original uploader was LightYear at English Wikipedia.
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.
Mechanical index (MI) is a unitless ultrasound metric. It is defined as [1] =, where P r is the peak rarefaction pressure of the ultrasound wave , derated by an attenuation factor to account for in-tissue acoustic attenuation; f c is the center frequency of the ultrasound pulse .
The ultrasound within tissue consists of very high frequency sound waves, between 800,000 Hz and 20,000,000 Hz, which cannot be heard by humans. Some of the advantages of ultrasound as a diagnostic and therapeutic tool include its safety profile, lack of radiation, portability, and low cost. [4]
Sound from ultrasound is the name given here to the generation of audible sound from modulated ultrasound without using an active receiver. This happens when the modulated ultrasound passes through a nonlinear medium which acts, intentionally or unintentionally, as a demodulator .