Ad
related to: volume of water in pipe chart
Search results
Results From The WOW.Com Content Network
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
Volumetric flow rate is defined by the limit [3] = ˙ = =, that is, the flow of volume of fluid V through a surface per unit time t.. Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity.
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
For circular pipes of different surface roughness, at a Reynolds number below the critical value of approximately 2000 [2] pipe flow will ultimately be laminar, whereas above the critical value turbulent flow can persist, as shown in Moody chart. For non-circular pipes, such as rectangular ducts, the critical Reynolds number is shifted, but ...
For pipe flows a so-called transit time method is applied where a radiotracer is injected as a pulse into the measured flow. The transit time is defined with the help of radiation detectors placed on the outside of the pipe. The volume flow is obtained by multiplying the measured average fluid flow velocity by the inner pipe cross-section.
D H is the hydraulic diameter of the pipe (m); Q is the volumetric flow rate (m 3 /s); A is the pipe's cross-sectional area (m 2); u is the mean speed of the fluid (SI units: m/s); μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); ν is the kinematic viscosity of the fluid, ν = μ / ρ (m 2 /s); ρ is the density ...
For the limiting case of a very wide duct, i.e. a slot of width b, where b ≫ a, and a is the water depth, then D H = 4a. For a fully filled duct or pipe whose cross-section is a convex regular polygon , the hydraulic diameter is equivalent to the diameter D {\displaystyle D} of a circle inscribed within the wetted perimeter .