Search results
Results From The WOW.Com Content Network
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.
In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement x = y. It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the ...
In mathematics, the classical Kronecker limit formula describes the constant term at s = 1 of a real analytic Eisenstein series (or Epstein zeta function) in terms of the Dedekind eta function. There are many generalizations of it to more complicated Eisenstein series. It is named for Leopold Kronecker.
In linear algebra, given a vector space with a basis of vectors indexed by an index set (the cardinality of is the dimension of ), the dual set of is a set of vectors in the dual space with the same index set such that and form a biorthogonal system.
This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two rotations. He derived this formula in 1840 (see page 408). [17] The three rotation axes A, B, and C form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation angles.
where is the Kronecker delta. These two relationships may be understood to be matrix inverse relationships. These two relationships may be understood to be matrix inverse relationships. That is, let s be the lower triangular matrix of Stirling numbers of the first kind, whose matrix elements s n k = s ( n , k ) . {\displaystyle s_{nk}=s(n,k).\,}
The Kronecker delta is one of the family of generalized Kronecker deltas. The generalized Kronecker delta of degree 2 p may be defined in terms of the Kronecker delta by (a common definition includes an additional multiplier of p ! on the right):