Search results
Results From The WOW.Com Content Network
Tidal heating (also known as tidal working or tidal flexing) occurs through the tidal friction processes: orbital and rotational energy is dissipated as heat in either (or both) the surface ocean or interior of a planet or satellite. When an object is in an elliptical orbit, the tidal forces acting on it are stronger near periapsis than near ...
Tidal heating of Io (also known as tidal working) occurs through the tidal friction processes between Jupiter and its moon. Orbital and rotational energy are dissipated as heat in the crust of the moon. Io has a similar mass and size as the Moon, but Io is the most geologically active body in the Solar System. This is caused by the heating ...
Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite (e.g. the Moon) and the primary planet that it orbits (e.g. Earth). The acceleration causes a gradual recession of a satellite in a prograde orbit (satellite moving to a higher orbit, away from the primary body, with a lower orbital velocity and hence a ...
Tidal flexing. Add languages. Add links. Article; Talk; ... Download QR code; Print/export Download as PDF; Printable version; In other projects
Slack tide or slack water is the short period in a body of tidal water when the water is completely unstressed, and there is no movement either way in the tidal stream. It occurs before the direction of the tidal stream reverses. [1] Slack water can be estimated using a tidal atlas or the tidal diamond information on a nautical chart. [2]
A tidal atlas or a tidal stream atlas is used to predict the direction and speed of tidal currents. A tidal atlas usually consists of a set of 12 or 13 diagrams, one for each hour of the tidal cycle, for a coastal region. Each diagram uses arrows to indicate the direction of the flow at that time.
In coastal areas, because the ocean tide is quite out of step with the Earth tide, at high ocean tide there is an excess of water above what would be the gravitational equilibrium level, and therefore the adjacent ground falls in response to the resulting differences in weight. At low tide there is a deficit of water and the ground rises.
The internal tidal energy in one tidal period going through an area perpendicular to the direction of propagation is called the energy flux and is measured in Watts/m. The energy flux at one point can be summed over depth- this is the depth-integrated energy flux and is measured in Watts/m.