Search results
Results From The WOW.Com Content Network
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
The gradient of a function is called a gradient field. A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative ...
Download as PDF; Printable version; ... the gradient is the vector field: ... as in the following example which uses the algebraic identity C⋅(A ...
These gradients are critical for cellular identity and cell relocation. Similarly, the gradients produced by cells may influence cellular fate by their temporal and spatial characteristics. In certain organisms, the choice of cell fate can be determined by a gradient, a binary choice, or through a relay of molecules released by a cell. [1]
In biology, a cline is a measurable gradient in a single characteristic (or biological trait) of a species across its geographical range. [1] Clines usually have a genetic (e.g. allele frequency, blood type), or phenotypic (e.g. body size, skin pigmentation) character.
Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. [1] The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. [1] It has been observed to varying degrees in Earth's past. [2]
Homogeneous regions have spatial gradient vector norm equal to zero. When evaluated over vertical position (altitude or depth), it is called vertical derivative or vertical gradient; the remainder is called horizontal gradient component, the vector projection of the full gradient onto the horizontal plane. Examples: Biology
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse: