Search results
Results From The WOW.Com Content Network
In mathematics, the Regiomontanus's angle maximization problem, is a famous optimization problem [1] posed by the 15th-century German mathematician Johannes Müller [2] (also known as Regiomontanus). The problem is as follows: The two dots at eye level are possible locations of the viewer's eye. A painting hangs from a wall.
For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17530°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60639° and the crank-rod angle is 88.21832°. Clearly, in ...
where is the angle (in radians) between the two flat sides of the pulley that the v-belt presses against. [5] A flat belt has an effective angle of α = π {\displaystyle \alpha =\pi } . The material of a V-belt or multi-V serpentine belt tends to wedge into the mating groove in a pulley as the load increases, improving torque transmission.
The belt problem. The belt problem is a mathematics problem which requires finding the length of a crossed belt that connects two circular pulleys with radius r 1 and r 2 whose centers are separated by a distance P. The solution of the belt problem requires trigonometry and the concepts of the bitangent line, the vertical angle, and congruent ...
Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors [1] – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies.
Langley's Adventitious Angles Solution to Langley's 80-80-20 triangle problem. Langley's Adventitious Angles is a puzzle in which one must infer an angle in a geometric diagram from other given angles. It was posed by Edward Mann Langley in The Mathematical Gazette in 1922. [1] [2]
The arc length of one branch between x = x 1 and x = x 2 is a ln y 1 / y 2 . The area between the tractrix and its asymptote is π a 2 / 2 , which can be found using integration or Mamikon's theorem. The envelope of the normals of the tractrix (that is, the evolute of the tractrix) is the catenary (or chain curve) given by y = a ...
Because the "sweep" of the area under the involute is bounded by a tangent line (see diagram and derivation below) which is not the boundary (¯) between overlapping areas, the decomposition of the problem results in four computable areas: a half circle whose radius is the tether length (A 1); the area "swept" by the tether over an angle of 2 ...