When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  3. Cubic pyramid - Wikipedia

    en.wikipedia.org/wiki/Cubic_pyramid

    In 4-dimensional geometry, the cubic pyramid is bounded by one cube on the base and 6 square pyramid cells which meet at the apex. Since a cube has a circumradius divided by edge length less than one, [ 1 ] the square pyramids can be made with regular faces by computing the appropriate height.

  4. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    However the total energy of the particle E and its relativistic momentum p are frame-dependent; relative motion between two frames causes the observers in those frames to measure different values of the particle's energy and momentum; one frame measures E and p, while the other frame measures E ′ and p ′, where E ′ ≠ E and p ′ ≠ p ...

  5. Cubical bipyramid - Wikipedia

    en.wikipedia.org/wiki/Cubical_bipyramid

    In 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, {4,3} + { }. Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A cubical bipyramid can be seen as two cubic pyramids augmented together at their base. [1]

  6. Square pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_number

    As well as counting spheres in a pyramid, these numbers can be used to solve several other counting problems. For example, a common mathematical puzzle involves counting the squares in a large n by n square grid. [11] This count can be derived as follows: The number of 1 × 1 squares in the grid is n 2. The number of 2 × 2 squares in the grid ...

  7. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.

  8. Missing square puzzle - Wikipedia

    en.wikipedia.org/wiki/Missing_square_puzzle

    The apparent paradox is explained by the fact that the side of the new large square is a little smaller than the original one. If θ is the angle between two opposing sides in each quadrilateral, then the ratio of the two areas is given by sec 2 θ. For θ = 5°, this is approximately 1.00765, which corresponds to a difference of about 0.8%.

  9. Elongated square pyramid - Wikipedia

    en.wikipedia.org/wiki/Elongated_square_pyramid

    The height of an elongated square pyramid can be calculated by adding the height of an equilateral square pyramid and a cube. The height of a cube is the same as the edge length of a cube's side, and the height of an equilateral square pyramid is ( 1 / 2 ) a {\displaystyle (1/{\sqrt {2}})a} .