When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The neutron is a subatomic particle, symbol n or n 0, that has no electric charge, and a mass slightly greater than that of a proton.The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the first self-sustaining nuclear reactor (Chicago Pile-1, 1942) and the first nuclear weapon (Trinity, 1945).

  3. Atomic number - Wikipedia

    en.wikipedia.org/wiki/Atomic_number

    Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in daltons (making a quantity called the "relative isotopic mass"), is within 1% of the ...

  4. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    The nuclear force also pulls neutrons together, or neutrons and protons. [ 11 ] The energy of the nucleus is negative with regard to the energy of the particles pulled apart to infinite distance (just like the gravitational energy of planets of the Solar System), because energy must be utilized to split a nucleus into its individual protons and ...

  5. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Spin is measured in units of the reduced Planck constant (ħ), with electrons, protons and neutrons all having spin 1 ⁄ 2 ħ, or "spin-1 ⁄ 2". In an atom, electrons in motion around the nucleus possess orbital angular momentum in addition to their spin, while the nucleus itself possesses angular momentum due to its nuclear spin. [83]

  6. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    A model of an atomic nucleus showing it as a compact bundle of protons (red) and neutrons (blue), the two types of nucleons.In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics.

  7. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    Therefore, a nucleus with an even number of protons and an even number of neutrons has 0 spin and positive parity. A nucleus with an even number of protons and an odd number of neutrons (or vice versa) has the parity of the last neutron (or proton), and the spin equal to the total angular momentum of this neutron (or proton).

  8. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z.

  9. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    Since protons and neutrons are both baryons, the mass number A is identical with the baryon number B of the nucleus (and also of the whole atom or ion). The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N ...