Search results
Results From The WOW.Com Content Network
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
Consider a circle in with center at the origin and radius . Gauss's circle problem asks how many points there are inside this circle of the form ( m , n ) {\displaystyle (m,n)} where m {\displaystyle m} and n {\displaystyle n} are both integers.
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
The area-equivalent radius of a 2D object is the radius of a circle with the same area as the object Cross sectional area of a trapezoidal open channel, red highlights the wetted perimeter, where water is in contact with the channel.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
Roundness = Perimeter 2 / 4 π × Area . This ratio will be 1 for a circle and greater than 1 for non-circular shapes. Another definition is the inverse of that: Roundness = 4 π × Area / Perimeter 2 , which is 1 for a perfect circle and goes down as far as 0 for highly non-circular shapes.
Pi can be obtained from a circle if its radius and area are known using the relationship: A = π r 2 . {\displaystyle A=\pi r^{2}.} If a circle with radius r is drawn with its center at the point (0, 0) , any point whose distance from the origin is less than r will fall inside the circle.
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.