Search results
Results From The WOW.Com Content Network
Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out ...
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
As quoted from these sources in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 9, Molecular Structure and Spectroscopy; Electronegativity Pauling, L., The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca, New York, 1960.
The Mulliken electronegativity can only be calculated for an element whose electron affinity is known. Measured values are available for 72 elements, while approximate values have been estimated or calculated for the remaining elements. The Mulliken electronegativity of an atom is sometimes said to be the negative of the chemical potential. [14]
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity. [14] Trend-wise, as one progresses from left to right across a period , the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the ...
The electron affinity (usually given by the symbol in solid state physics) gives the energy difference between the lower edge of the conduction band and the vacuum level of the semiconductor. The band gap (usually given the symbol E g {\displaystyle E_{\rm {g}}} ) gives the energy difference between the lower edge of the conduction band and the ...
Like the periodic table, the list below organizes the elements by the number of protons in their atoms; it can also be organized by other properties, such as atomic weight, density, and electronegativity. For more detailed information about the origins of element names, see List of chemical element name etymologies.