Search results
Results From The WOW.Com Content Network
Fresnel's "plane of polarization", traditionally used in optics, is the plane containing the magnetic vectors (B & H) and the wave-normal. Malus's original "plane of polarization" was the plane containing the magnetic vectors and the ray. (In an isotropic medium, θ = 0 and Malus's plane merges with Fresnel's.)
Diagram of the electric field of a light wave (blue), linear-polarized along a plane (purple line), and consisting of two orthogonal, in-phase components (red and green waves) In electrodynamics , linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a ...
The first is plane or linear polarization, the second is elliptical polarization, and the third is circular polarization. The light may also be partially polarized in addition to these. The polarization of light cannot be determined by the human eye on its own. However, some animals and insects have a vision that is sensitive to polarization. [1]
Linearly polarized waves consist of photons that are in a superposition of right and left circularly polarized states, with equal amplitude and phases synchronized to give oscillation in a plane. [8] Polarization is an important parameter in areas of science dealing with transverse waves, such as optics, seismology, radio, and microwaves.
For a general input polarization, the net effect of the rhomb is identical to that of a birefringent (doubly-refractive) quarter-wave plate, except that a simple birefringent plate gives the desired 90° separation at a single frequency, and not (even approximately) at widely different frequencies, whereas the phase separation given by the rhomb depends on its refractive index, which varies ...
Kerr rotation and Kerr ellipticity are changes in the polarization of incident light which comes in contact with a gyromagnetic material. Kerr rotation is a rotation in the plane of polarization of transmitted light, and Kerr ellipticity is the ratio of the major to minor axis of the ellipse traced out by elliptically polarized light on the plane through which it propagates.
Any fixed polarization can be described in terms of the shape and orientation of the polarization ellipse, which is defined by two parameters: axial ratio AR and tilt angle . The axial ratio is the ratio of the lengths of the major and minor axes of the ellipse, and is always greater than or equal to one.
The plane of polarization is turned by optically active compounds. According to the direction in which the light is rotated, the enantiomer is referred to as dextro-rotatory or levo-rotatory. The optical activity of enantiomers is additive. If different enantiomers exist together in one solution, their optical activity adds up.