Ads
related to: is x 3 a growing function calculator calculus
Search results
Results From The WOW.Com Content Network
In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy, or a Schwichtenberg-Wainer hierarchy) [1] is an ordinal-indexed family of rapidly increasing functions f α: N → N (where N is the set of natural numbers {0, 1, ...}, and α ranges up to some large countable ordinal).
1. The domain is the real line .The set-family contains all the half-lines (rays) from a given number to positive infinity, i.e., all sets of the form {>} for some .For any set of real numbers, the intersection contains + sets: the empty set, the set containing the largest element of , the set containing the two largest elements of , and so on.
In mathematics, a function or sequence is said to exhibit quadratic growth when its values are proportional to the square of the function argument or sequence position. "Quadratic growth" often means more generally "quadratic growth in the limit ", as the argument or sequence position goes to infinity – in big Theta notation , f ( x ) = Θ ...
For example, let f(x) = 6x 4 − 2x 3 + 5, and suppose we wish to simplify this function, using O notation, to describe its growth rate as x approaches infinity. This function is the sum of three terms: 6x 4, −2x 3, and 5. Of these three terms, the one with the highest growth rate is the one with the largest exponent as a function of x ...
For example, when =, it grows at 3 times its size, but when = it grows at 30% of its size. If an exponentially growing function grows at a rate that is 3 times is present size, then it always grows at a rate that is 3 times its present size. When it is 10 times as big as it is now, it will grow 10 times as fast.
Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is determined by considering the limiting value of the slopes of the second lines.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The slow-growing hierarchy grows much more slowly than the fast-growing hierarchy. Even g ε 0 is only equivalent to f 3 and g α only attains the growth of f ε 0 (the first function that Peano arithmetic cannot prove total in the hierarchy) when α is the Bachmann–Howard ordinal.