When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  3. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    The differential is also used to define the dual concept of pullback. Stochastic calculus provides a notion of stochastic differential and an associated calculus for stochastic processes. The integrator in a Stieltjes integral is represented as the differential of a function.

  4. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f , then f is said to be differentiable at x 0 if the derivative f ′ ( x 0 ) {\displaystyle f'(x_{0})} exists.

  5. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    An ordinary differential equation is a differential equation that relates functions of one variable to their derivatives with respect to that variable. A partial differential equation is a differential equation that relates functions of more than one variable to their partial derivatives. Differential equations arise naturally in the physical ...

  7. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken. For example, the second partial derivatives of a function f(x, y) are: [6]

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The coordinate functions are real-valued functions, so the above definition of derivative applies to them. The derivative of y ( t ) {\displaystyle \mathbf {y} (t)} is defined to be the vector , called the tangent vector , whose coordinates are the derivatives of the coordinate functions.

  9. Exact differential - Wikipedia

    en.wikipedia.org/wiki/Exact_differential

    In multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in ...