When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    The hyperplanes of a three-dimensional space are the two-dimensional subspaces, that is, the planes. In terms of Cartesian coordinates, the points of a hyperplane satisfy a single linear equation, so planes in this 3-space are described by linear equations. A line can be described by a pair of independent linear equations—each representing a ...

  3. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  4. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In three-dimensional space, a first degree equation in the variables x, y, and z defines a plane, so two such equations, provided the planes they give rise to are not parallel, define a line which is the intersection of the planes.

  5. Trilinear interpolation - Wikipedia

    en.wikipedia.org/wiki/Trilinear_interpolation

    Trilinear interpolation as two bilinear interpolations followed by a linear interpolation. Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid . It approximates the value of a function at an intermediate point ( x , y , z ) {\displaystyle (x,y,z)} within the local axial rectangular prism linearly ...

  6. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    In three dimensions a line is represented by the intersection of two planes, each of which has an equation of the form [] [] =. Thus a set of n lines can be represented by 2n equations in the 3-dimensional coordinate vector w:

  7. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.

  8. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  9. Flat (geometry) - Wikipedia

    en.wikipedia.org/wiki/Flat_(geometry)

    In three-dimensional space, a single linear equation involving x, y, and z defines a plane, while a pair of linear equations can be used to describe a line. In general, a linear equation in n variables describes a hyperplane, and a system of linear equations describes the intersection of those hyperplanes. Assuming the equations are consistent ...