When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.

  3. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    An integer greater than one can be written as a sum of two squares if and only if its prime decomposition contains no factor p k, where prime and k is odd. In writing a number as a sum of two squares, it is allowed for one of the squares to be zero, or for both of them to be equal to each other, so all squares and all doubles of squares are ...

  4. Euler's factorization method - Wikipedia

    en.wikipedia.org/wiki/Euler's_factorization_method

    The Brahmagupta–Fibonacci identity states that the product of two sums of two squares is a sum of two squares. Euler's method relies on this theorem but it can be viewed as the converse, given n = a 2 + b 2 = c 2 + d 2 {\displaystyle n=a^{2}+b^{2}=c^{2}+d^{2}} we find n {\displaystyle n} as a product of sums of two squares.

  5. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [ 4 ] [ 5 ] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ). [ 6 ]

  6. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    Congruences of squares are extremely useful in integer factorization algorithms. Conversely, because finding square roots modulo a composite number turns out to be probabilistic polynomial-time equivalent to factoring that number, any integer factorization algorithm can be used efficiently to identify a congruence of squares.

  7. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Factorizations of sums of two squares can be obtained using the sum of two squares theorem. Any other integer Apollonian gasket can be formed by multiplying a primitive root quadruple by an arbitrary integer, and any quadruple in one of these gaskets (that is, any integer solution to the Descartes equation) can be formed by reversing the ...

  8. Super Bowl Squares: How Much Are Your Numbers Worth? - AOL

    www.aol.com/news/2013-02-01-super-bowl-squares...

    Super Bowl Squares are the second most popular office sports betting tradition in the United States (No. 1: March Madness brackets), maybe because the outcome is based entirely on luck. Here's how ...

  9. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Squares of odd numbers are odd, and are congruent to 1 modulo 8, since (2n + 1) 2 = 4n(n + 1) + 1, and n(n + 1) is always even. In other words, all odd square numbers have a remainder of 1 when divided by 8. Every odd perfect square is a centered octagonal number. The difference between any two odd perfect squares is a multiple of 8.