When.com Web Search

  1. Ads

    related to: 2nd order legendre polynomial equation generator worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Legendre function - Wikipedia

    en.wikipedia.org/wiki/Legendre_function

    The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...

  3. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...

  4. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/.../Associated_Legendre_polynomials

    In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation () + [(+)] =,or equivalently [() ()] + [(+)] =,where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively.

  5. Rodrigues' formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_formula

    Similar formulae hold for many other sequences of orthogonal functions arising from Sturm–Liouville equations, and these are also called the Rodrigues formula (or Rodrigues' type formula) for that case, especially when the resulting sequence is polynomial.

  6. Classical orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Classical_orthogonal...

    Classical orthogonal polynomials appeared in the early 19th century in the works of Adrien-Marie Legendre, who introduced the Legendre polynomials. In the late 19th century, the study of continued fractions to solve the moment problem by P. L. Chebyshev and then A.A. Markov and T.J. Stieltjes led to the general notion of orthogonal polynomials.

  7. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre . It is also sometimes known as de Polignac's formula , after Alphonse de Polignac .