When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scattering - Wikipedia

    en.wikipedia.org/wiki/Scattering

    The main difference between the effects of single and multiple scattering is that single scattering can usually be treated as a random phenomenon, whereas multiple scattering, somewhat counterintuitively, can be modeled as a more deterministic process because the combined results of a large number of scattering events tend to average out.

  3. Isomorphous replacement - Wikipedia

    en.wikipedia.org/wiki/Isomorphous_replacement

    Single isomorphous replacement is possible, but gives an ambiguious result with two possible phases; density modification is required to resolve the ambiguity. There are also forms that also take into account the anomalous X-ray scattering of the soaked heavy atoms, called MIRAS and SIRAS respectively.

  4. Single-wavelength anomalous diffraction - Wikipedia

    en.wikipedia.org/wiki/Single-wavelength...

    Single-wavelength anomalous diffraction (SAD) is a technique used in X-ray crystallography that facilitates the determination of the structure of proteins or other biological macromolecules by allowing the solution of the phase problem. In contrast to multi-wavelength anomalous diffraction (MAD), SAD uses a single dataset at a single ...

  5. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    Multiple data sets may be necessary for certain phasing methods. For example, multi-wavelength anomalous dispersion phasing requires that the scattering be recorded at least three (and usually four, for redundancy) wavelengths of the incoming X-ray radiation. A single crystal may degrade too much during the collection of one data set, owing to ...

  6. Monte Carlo method for photon transport - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method_for...

    Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.

  7. X-ray absorption spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_absorption_spectroscopy

    The X-ray absorption near-edge structure , introduced in 1980 and later in 1983 and also called NEXAFS (near-edge X-ray absorption fine structure), which are dominated by core transitions to quasi bound states (multiple scattering resonances) for photoelectrons with kinetic energy in the range from 10 to 150 eV above the chemical potential ...

  8. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required.

  9. Phase problem - Wikipedia

    en.wikipedia.org/wiki/Phase_problem

    In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography , where the phase problem has to be solved for the determination of a structure from diffraction data. [ 1 ]