Search results
Results From The WOW.Com Content Network
A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.
For optical fibers, a power-law index profile is an index of refraction profile characterized by = {()where =, and () is the nominal refractive index as a function of distance from the fiber axis, is the nominal refractive index on axis, is the refractive index of the cladding, which is taken to be homogeneous (() = ), is the core radius, and is a parameter that defines the shape of the profile.
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...
A value H in the range 0.5–1 indicates a time series with long-term positive autocorrelation, meaning that the decay in autocorrelation is slower than exponential, following a power law; for the series it means that a high value tends to be followed by another high value and that future excursions to more high values do occur. A value in the ...
The power law is often used in wind power assessments [4] [5] where wind speeds at the height of a turbine ( 50 metres) must be estimated from near surface wind observations (~10 metres), or where wind speed data at various heights must be adjusted to a standard height [6] prior to use.
Viscosity is plotted against shear rate in a log(η) vs. log(˙) plot, where the linear region is the shear-thinning regime and can be expressed using the Ostwald and de Waele power law equation: [8] = () = ˙
In one dimension, the constitutive equation of the Herschel-Bulkley model after the yield stress has been reached can be written in the form: [3] [4] ˙ =, < = + ˙, where is the shear stress [Pa], the yield stress [Pa], the consistency index [Pa s], ˙ the shear rate [s], and the flow index [dimensionless].