Search results
Results From The WOW.Com Content Network
Water electrolysis – a process that uses an electric current to split water molecules into hydrogen and oxygen gases; Electrolytic capacitors – a type of capacitor that uses an electrolytic solution as one of its plates
Mulliken charges arise from the Mulliken population analysis [1] [2] and provide a means of estimating partial atomic charges from calculations carried out by the methods of computational chemistry, particularly those based on the linear combination of atomic orbitals molecular orbital method, and are routinely used as variables in linear regression (QSAR [3]) procedures. [4]
The double-layer is like the dielectric layer in a conventional capacitor, but with the thickness of a single molecule. Using the early Helmholtz model to calculate the capacitance the model predicts a constant differential capacitance C d independent from the charge density, even depending on the dielectric constant ε and the charge layer ...
The formal charge is a tool for estimating the distribution of electric charge within a molecule. [1] [2] The concept of oxidation states constitutes a competing method to assess the distribution of electrons in molecules. If the formal charges and oxidation states of the atoms in carbon dioxide are compared, the following values are arrived at:
The main reason is that its Schrödinger equation is very difficult to solve. Applications are restricted to small systems like the hydrogen molecule. Almost all calculations of molecular wavefunctions are based on the separation of the Coulomb Hamiltonian first devised by Born and Oppenheimer. The nuclear kinetic energy terms are omitted from ...
Graphical representation of an inductively coupled Marx generator, based on water capacitors. The blue is the water between the plates, and the balls in the central column are the spark gaps that break over to allow the capacitors to charge in parallel, and discharge rapidly in series. A water capacitor is a device that uses water as its ...
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.