Search results
Results From The WOW.Com Content Network
Its value is zero for H + + e − → 1 ⁄ 2 H 2 by definition, positive for oxidizing agents stronger than H + (e.g., +2.866 V for F 2) and negative for oxidizing agents that are weaker than H + (e.g., −0.763V for Zn 2+). [8]: 873 For a redox reaction that takes place in a cell, the potential difference is: E o cell = E o cathode – E o anode
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
Reducing agents and oxidizing agents are the ones responsible for corrosion, which is the "degradation of metals as a result of electrochemical activity". [3] Corrosion requires an anode and cathode to take place. The anode is an element that loses electrons (reducing agent), thus oxidation always occurs in the anode, and the cathode is an ...
Illustration of a redox reaction Sodium chloride is formed through the redox reaction of sodium metal and chlorine gas. Redox reactions can be understood in terms of the transfer of electrons from one involved species (reducing agent) to another (oxidizing agent). In this process, the former species is oxidized and the latter is reduced. Though ...
Definitions must be clearly expressed and carefully controlled, especially if the sources of data are different and arise from different fields (e.g., picking and directly mixing data from classical electrochemistry textbooks (versus SHE, pH = 0) and microbiology textbooks (′ at pH = 7) without paying attention to the conventions on which ...
The formation of ROS can be stimulated by a variety of agents such as pollutants, heavy metals, [19] tobacco, smoke, drugs, xenobiotics, microplastics, or radiation. In plants, in addition to the action of dry abiotic factors , high temperature, interaction with other living beings can influence the production of ROS.