When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  3. Kripke structure (model checking) - Wikipedia

    en.wikipedia.org/wiki/Kripke_structure_(model...

    a transition relation R ⊆ S × S such that R is left-total, i.e., ∀s ∈ S ∃s' ∈ S such that (s,s') ∈ R. a labeling (or interpretation) function L: S → 2 AP. Since R is left-total, it is always possible to construct an infinite path through the Kripke structure. A deadlock state can be

  4. State-transition table - Wikipedia

    en.wikipedia.org/wiki/State-transition_table

    In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1.

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    The changes of state of the system are called transitions. The probabilities associated with various state changes are called transition probabilities. The process is characterized by a state space, a transition matrix describing the probabilities of particular transitions, and an initial state (or initial distribution) across the state space ...

  6. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.

  7. Weighting pattern - Wikipedia

    en.wikipedia.org/wiki/Weighting_pattern

    For such a system, the weighting pattern is (,) = (,) such that is the state transition matrix. The weighting pattern will determine a system, but if there exists a realization for this weighting pattern then there exist many that do so.

  8. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  9. Master equation - Wikipedia

    en.wikipedia.org/wiki/Master_equation

    This is the opposite of what one might expect, but is appropriate for conventional matrix multiplication. For each state k, the increase in occupation probability depends on the contribution from all other states to k, and is given by: , where is the probability for the system to be in the state , while the matrix is filled with a grid of ...