When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    It is computationally just as fast as forward selection. It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune the model. If two variables are almost equally correlated with the response, then their coefficients should increase at approximately the same rate.

  4. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  5. Forward algorithm - Wikipedia

    en.wikipedia.org/wiki/Forward_algorithm

    The RBF neural network is constructed by the conventional subset selection algorithms. The network structure is determined by combining both the stepwise forward network configuration and the continuous RBF parameter optimization. It is used to efficiently and effectively produce a parsimonious RBF neural network that generalizes well.

  6. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    The backward pass has an advantage over the forward pass: at any step it can choose any term to delete, whereas the forward pass at each step can only see the next pair of terms. The forward pass adds terms in pairs, but the backward pass typically discards one side of the pair and so terms are often not seen in pairs in the final model.

  7. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  8. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Forward-Backward Euler method The result of applying both the Forward Euler method and the Forward-Backward Euler method for = and =. In order to apply the IMEX-scheme, consider a slightly different differential equation:

  9. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    The Baum–Welch algorithm was named after its inventors Leonard E. Baum and Lloyd R. Welch.The algorithm and the Hidden Markov models were first described in a series of articles by Baum and his peers at the IDA Center for Communications Research, Princeton in the late 1960s and early 1970s. [2]