Search results
Results From The WOW.Com Content Network
The higher the percentage, the stronger the electrolyte. Thus, even if a substance is not very soluble, but does dissociate completely into ions, the substance is defined as a strong electrolyte. Similar logic applies to a weak electrolyte. Strong acids and bases are good examples, such as HCl and H 2 SO 4. These will all exist as ions in an ...
Complete dissociation. Ion association may take place, particularly with ions of higher charge. This was followed up in detail by Niels Bjerrum. The Bjerrum length is the separation at which the electrostatic interaction between two ions is comparable in magnitude to kT. Weak electrolytes. A weak electrolyte is one that is not fully dissociated.
In thermochemistry, the enthalpy of solution (heat of solution or enthalpy of solvation) is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution.
An electrolyte in a solution may be described as "concentrated" if it has a high concentration of ions, or "dilute" if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak.
For strong electrolytes, however, Lewis and Randall recognized that the law fails badly since the supposed equilibrium constant is actually far from constant. [5] This is because the dissociation of strong electrolytes into ions is essentially complete below a concentration threshold value.
Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts. One of the main characteristics of a solution with dissolved ions is the ionic strength.
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...
A related phenomenon is known as the Second Wien Effect or the dissociation field effect, and it involves increased dissociation constants of weak acids at high electrical gradients. [3] The dissociation of weak chemical bases is unaffected.